According to a 1987 post by Chris Cole (who was then working at Peregrine Systems) to sci.crypt on Usenet, the following three short ciphers were passed to Richard Feynman by an unnamed fellow scientist at Los Alamos (*hence “The Feynman Ciphers”*). The first was cracked by Jack C. Morrison of JPL, but the other two remain unbroken.

**Feynman Challenge Cipher #1** *(Solved!)*

MEOTAIHSIBRTEWDGLGKNLANEAINOEEPEYST NPEUOOEHRONLTIROSDHEOTNPHGAAETOHSZO TTENTKEPADLYPHEODOWCFORRRNLCUEEEEOP GMRLHNNDFTOENEALKEHHEATTHNMESCNSHIR AETDAHLHEMTETRFSWEDOEOENEGFHETAEDGH RLNNGOAAEOCMTURRSLTDIDOREHNHEHNAYVT IERHEENECTRNVIOUOEHOTRNWSAYIFSNSHOE MRTRREUAUUHOHOOHCDCHTEEISEVRLSKLIHI IAPCHRHSIHPSNWTOIISISHHNWEMTIEYAFEL NRENLEERYIPHBEROTEVPHNTYATIERTIHEEA WTWVHTASETHHSDNGEIEAYNHHHNNHTW

(380 characters, 5 x 76 transposition cipher, start from the last position and step back 5 each time, then repeat starting from the letter one before the last position etc) --> Chaucer, Canterbury Tales:-

WHANTHATAPRILLEWITHHISSHOURESSOOTET HEDROGHTEOFMARCHHATHPERCEDTOTHEROOT EANDBATHEDEVERYVEYNEINSWICHLICOUROF WHICHVERTUENGENDREDISTHEFLOURWHANZE PHIRUSEEKWITHHISSWEETEBREFTHINSPIRE DHATHINEVERYHOLTANDHEETHTHETENDRECR OPPESANDTHEYONGESONNEHATHINTHERAMHI SHALVECOURSYRONNEANDSMALEFOWELESMAK ENMELODYETHATSLEPENALTHENYGHTWITHOP ENYESOPRIKETHHEMNATUREINHIRCORAGEST HANNELONGENFOLKTOGOONONPILGRIM

**Feynman Challenge Cipher #2**

XUKEXWSLZJUAXUNKIGWFSOZRAWURORKXAOS LHROBXBTKCMUWDVPTFBLMKEFVWMUXTVTWUI DDJVZKBRMCWOIWYDXMLUFPVSHAGSVWUFWOR CWUIDUJCNVTTBERTUNOJUZHVTWKORSVRZSV VFSQXOCMUWPYTRLGBMCYPOJCLRIYTVFCCMU WUFPOXCNMCIWMSKPXEDLYIQKDJWIWCJUMVR CJUMVRKXWURKPSEEIWZVXULEIOETOOFWKBI UXPXUGOWLFPWUSCH

**Feynman Challenge Cipher #3**

WURVFXGJYTHEIZXSQXOBGSVRUDOOJXATBKT ARVIXPYTMYABMVUFXPXKUJVPLSDVTGNGOSI GLWURPKFCVGELLRNNGLPYTFVTPXAJOSCWRO DORWNWSICLFKEMOTGJYCRRAOJVNTODVMNSQ IVICRBICRUDCSKXYPDMDROJUZICRVFWXIFP XIVVIEPYTDOIAVRBOOXWRAKPSZXTZKVROSW CRCFVEESOLWKTOBXAUXVB

*Note: I found these ciphertexts on John’s Javascript Secret-Code Systems page.*

The first Feynman is a modulo 384 transposition cipher? I’m pretty certain it’s a 5×76 Horizontal / Vertical route transposition cipher. Can it be both?

Anne-Lise:as far as I know, they’re both semi-mathematical ways of describing the same thing. Which is “start at the end letter, and step backward 5 characters at a time (one pass at a time) to reveal the hidden message“. 🙂*g* Right then. I need to learn more math! :>

http://www.austininc.com/SciRealm/CodeSystems.html

Hi, just letting you know that the link to my site changed – AOL dropped hosting awhile back

Anne-Lise: revisiting this page, I think your description is a bit more accurate (the maths is sort of correct, but not particularly helpful), and that Feynman Cipher #1 would indeed be better described as a 5×76 transposition cipher. Text updated accordingly, thanks! 🙂

Pingback: A quick look at the Feynman Ciphers... -Cipher Mysteries